# Software Name: Cool-Chic
# SPDX-FileCopyrightText: Copyright (c) 2023-2025 Orange
# SPDX-License-Identifier: BSD 3-Clause "New"
#
# This software is distributed under the BSD-3-Clause license.
#
# Authors: see CONTRIBUTORS.md
"""A frame encoder is composed of a CoolChicEncoder and an InterCodingModule."""
import typing
from dataclasses import dataclass, field
from io import BytesIO
from typing import Any, Dict, List, Optional, OrderedDict, Union
import torch
from enc.component.coolchic import (
CoolChicEncoder,
CoolChicEncoderParameter,
)
from enc.component.core.quantizer import (
POSSIBLE_QUANTIZATION_NOISE_TYPE,
POSSIBLE_QUANTIZER_TYPE,
)
from enc.component.intercoding import InterCodingModule
from enc.io.format.data_type import FRAME_DATA_TYPE, POSSIBLE_BITDEPTH
from enc.io.format.yuv import DictTensorYUV, convert_444_to_420, yuv_dict_clamp
from enc.utils.codingstructure import FRAME_TYPE
from enc.utils.misc import POSSIBLE_DEVICE
from torch import Tensor, nn
[docs]
@dataclass
class FrameEncoderOutput:
"""Dataclass representing the output of FrameEncoder forward."""
# Either a [B, 3, H, W] tensor representing the decoded image or a
# dictionary with the following keys for yuv420:
# {
# 'y': [B, 1, H, W],
# 'u': [B, 1, H / 2, W / 2],
# 'v': [B, 1, H / 2, W / 2],
# }
# Note: yuv444 data are represented as a simple [B, 3, H, W] tensor
decoded_image: Union[Tensor, DictTensorYUV]
rate: Tensor # Rate associated to each latent [total_latent_value]
# Any other data required to compute some logs, stored inside a dictionary
additional_data: Dict[str, Any] = field(default_factory=lambda: {})
[docs]
class FrameEncoder(nn.Module):
"""A ``FrameEncoder`` is the object containing everything
required to encode a video frame or an image. It is composed of
a ``CoolChicEncoder`` and an ``ÌnterCodingModule``.
"""
[docs]
def __init__(
self,
coolchic_encoder_param: CoolChicEncoderParameter,
frame_type: FRAME_TYPE = "I",
frame_data_type: FRAME_DATA_TYPE = "rgb",
bitdepth: POSSIBLE_BITDEPTH = 8,
):
"""
Args:
coolchic_encoder_param: Parameters for the underlying CoolChicEncoder
frame_type: More info in
:doc:`coding_structure.py <../utils/codingstructure>`.
Defaults to "I".
frame_data_type: More info in
:doc:`coding_structure.py <../utils/codingstructure>`.
Defaults to "rgb"
bitdepth: More info in
:doc:`coding_structure.py <../utils/codingstructure>`.
Defaults to 8.
"""
super().__init__()
# ----- Copy the parameters
self.coolchic_encoder_param = coolchic_encoder_param
self.frame_type = frame_type
self.frame_data_type = frame_data_type
self.bitdepth = bitdepth
# "Core" CoolChic codec. This will be reset by the warm-up function
self.coolchic_encoder = CoolChicEncoder(self.coolchic_encoder_param)
self.inter_coding_module = InterCodingModule(self.frame_type)
[docs]
def forward(
self,
reference_frames: Optional[List[Tensor]] = None,
quantizer_noise_type: POSSIBLE_QUANTIZATION_NOISE_TYPE = "kumaraswamy",
quantizer_type: POSSIBLE_QUANTIZER_TYPE = "softround",
soft_round_temperature: Optional[float] = 0.3,
noise_parameter: Optional[float] = 1.0,
AC_MAX_VAL: int = -1,
flag_additional_outputs: bool = False,
) -> FrameEncoderOutput:
"""Perform the entire forward pass of a video frame / image.
1. **Simulate Cool-chic decoding** to obtain both the decoded image
:math:`\\hat{\\mathbf{x}}` as a :math:`(B, 3, H, W)` tensor
and its associated rate :math:`\\mathrm{R}(\\hat{\\mathbf{x}})` as
as :math:`(N)` tensor`, where :math:`N` is the number of latent
pixels. The rate is given in bits.
2. **Simulate the saving of the image to a file (Optional)**.
*Only if the model has been set in test mode* e.g.
``self.set_to_eval()`` . Take into account that
:math:`\\hat{\\mathbf{x}}` is a float Tensor, which is
gonna be saved as integer values in a file.
.. math::
\\hat{\\mathbf{x}}_{saved} = \\mathtt{round}(\Delta_q \\
\\hat{\\mathbf{x}}) / \\Delta_q, \\text{ with }
\\Delta_q = 2^{bitdepth} - 1
3. **Downscale to YUV 420 (Optional)**. *Only if the required output
format is YUV420*. The current output is a dense Tensor. Downscale
the last two channels to obtain a YUV420-like representation. This
is done with a nearest neighbor downsampling.
4. **Clamp the output** to be in :math:`[0, 1]`.
Args:
reference_frames: List of tensors representing the reference
frames. Can be set to None if no reference frame is available.
Default to None.
quantizer_noise_type: Defaults to ``"kumaraswamy"``.
quantizer_type: Defaults to ``"softround"``.
soft_round_temperature: Soft round temperature.
This is used for softround modes as well as the
ste mode to simulate the derivative in the backward.
Defaults to 0.3.
noise_parameter: noise distribution parameter. Defaults to 1.0.
AC_MAX_VAL: If different from -1, clamp the value to be in
:math:`[-AC\\_MAX\\_VAL; AC\\_MAX\\_VAL + 1]` to write the actual bitstream.
Defaults to -1.
flag_additional_outputs: True to fill
``CoolChicEncoderOutput['additional_data']`` with many different
quantities which can be used to analyze Cool-chic behavior.
Defaults to False.
Returns:
Output of the FrameEncoder for the forward pass.
"""
# CoolChic forward pass
coolchic_encoder_output = self.coolchic_encoder.forward(
quantizer_noise_type=quantizer_noise_type,
quantizer_type=quantizer_type,
soft_round_temperature=soft_round_temperature,
noise_parameter=noise_parameter,
AC_MAX_VAL=AC_MAX_VAL,
flag_additional_outputs=flag_additional_outputs,
)
# # Combine CoolChic output and reference frames through the inter coding modules
# inter_coding_output = self.inter_coding_module.forward(
# coolchic_output=coolchic_encoder_output,
# references=[] if reference_frames is None else reference_frames,
# flag_additional_outputs=flag_additional_outputs,
# )
decoded_image = coolchic_encoder_output.get("raw_out")
# Clamp decoded image & down sample YUV channel if needed
if not self.training:
max_dynamic = 2 ** (self.bitdepth) - 1
decoded_image = torch.round(decoded_image * max_dynamic) / max_dynamic
if self.frame_data_type == "yuv420":
decoded_image = convert_444_to_420(decoded_image)
decoded_image = yuv_dict_clamp(decoded_image, min_val=0.0, max_val=1.0)
else:
decoded_image = torch.clamp(decoded_image, 0.0, 1.0)
additional_data = {}
if flag_additional_outputs:
additional_data.update(coolchic_encoder_output.get("additional_data"))
# additional_data.update(inter_coding_output.additional_data)
results = FrameEncoderOutput(
decoded_image=decoded_image,
rate=coolchic_encoder_output.get("rate"),
additional_data=additional_data,
)
return results
# ------- Getter / Setter and Initializer
[docs]
def get_param(self) -> OrderedDict[str, Tensor]:
"""Return **a copy** of the weights and biases inside the module.
Returns:
OrderedDict[str, Tensor]: A copy of all weights & biases in the module.
"""
param = OrderedDict({})
param.update(
{
f"coolchic_encoder.{k}": v
for k, v in self.coolchic_encoder.get_param().items()
}
)
return param
[docs]
def set_param(self, param: OrderedDict[str, Tensor]):
"""Replace the current parameters of the module with param.
Args:
param (OrderedDict[str, Tensor]): Parameters to be set.
"""
self.load_state_dict(param)
[docs]
def reinitialize_parameters(self) -> None:
"""Reinitialize in place the different parameters of a FrameEncoder."""
self.coolchic_encoder.reinitialize_parameters()
[docs]
def set_to_train(self) -> None:
"""Set the current model to training mode, in place. This only
affects the quantization.
"""
self = self.train()
self.coolchic_encoder = self.coolchic_encoder.train()
self.inter_coding_module = self.inter_coding_module.train()
[docs]
def set_to_eval(self) -> None:
"""Set the current model to test mode, in place. This only
affects the quantization.
"""
self = self.eval()
self.coolchic_encoder = self.coolchic_encoder.eval()
self.inter_coding_module = self.inter_coding_module.eval()
[docs]
def to_device(self, device: POSSIBLE_DEVICE) -> None:
"""Push a model to a given device.
Args:
device: The device on which the model should run.
"""
assert device in typing.get_args(
POSSIBLE_DEVICE
), f"Unknown device {device}, should be in {typing.get_args(POSSIBLE_DEVICE)}"
self = self.to(device)
self.coolchic_encoder.to_device(device)
[docs]
def save(self) -> BytesIO:
"""Save the FrameEncoder into a bytes buffer and return it.
Returns:
Bytes representing the saved coolchic model
"""
buffer = BytesIO()
data_to_save = {
"bitdepth": self.bitdepth,
"frame_type": self.frame_type,
"frame_data_type": self.frame_data_type,
"coolchic_encoder_param": self.coolchic_encoder_param,
"coolchic_encoder": self.coolchic_encoder.get_param(),
"coolchic_nn_q_step": self.coolchic_encoder.get_network_quantization_step(),
"coolchic_nn_expgol_cnt": self.coolchic_encoder.get_network_expgol_count(),
}
if self.coolchic_encoder.full_precision_param is not None:
data_to_save["coolchic_full_precision_param"] = (
self.coolchic_encoder.full_precision_param
)
torch.save(data_to_save, buffer)
return buffer
[docs]
def load_frame_encoder(raw_bytes: BytesIO) -> FrameEncoder:
"""From already loaded raw bytes, load & return a CoolChicEncoder
Args:
raw_bytes: Already loaded raw bytes from which we'll instantiate the
CoolChicEncoder.
Returns:
Frame encoder loaded by the function
"""
# Reset the stream position to the beginning of the BytesIO object & load it
raw_bytes.seek(0)
loaded_data = torch.load(raw_bytes, map_location="cpu", weights_only=False)
# Create a frame encoder from the stored parameters
frame_encoder = FrameEncoder(
coolchic_encoder_param=loaded_data["coolchic_encoder_param"],
frame_type=loaded_data["frame_type"],
frame_data_type=loaded_data["frame_data_type"],
bitdepth=loaded_data["bitdepth"],
)
# Load the different submodules (only one cool-chic for now)
frame_encoder.coolchic_encoder.set_param(loaded_data["coolchic_encoder"])
frame_encoder.coolchic_encoder.nn_q_step = loaded_data["coolchic_nn_q_step"]
# Check if coolchic_nn_expgol_cnt is present in loaded data for backward
# compatibility. Not meant to stay very long.
if "coolchic_nn_expgol_cnt" in loaded_data:
frame_encoder.coolchic_encoder.nn_expgol_cnt = loaded_data[
"coolchic_nn_expgol_cnt"
]
if "coolchic_full_precision_param" in loaded_data:
frame_encoder.coolchic_encoder.full_precision_param = loaded_data[
"coolchic_full_precision_param"
]
return frame_encoder