# Software Name: Cool-Chic
# SPDX-FileCopyrightText: Copyright (c) 2023-2025 Orange
# SPDX-License-Identifier: BSD 3-Clause "New"
#
# This software is distributed under the BSD-3-Clause license.
#
# Authors: see CONTRIBUTORS.md
import math
import os
from typing import Tuple
import numpy as np
import torch
from torch import Tensor
from enc.io.format.data_type import POSSIBLE_BITDEPTH
def _skip_one_byte(data: bytearray) -> bytearray:
"""Skip one byte in a byte array and return the array
with its first byte removed.
Args:
data: Input byte array. Length is N
Returns:
bytearray: Output byte array. Length is N - 1
"""
return data[1:]
def _read_int_until_blank(data: bytearray) -> Tuple[int, bytearray]:
"""Parse an ASCII int until running into one of the space characters.
Also return the input byte array where the bytes corresponding to
both the int and the space character are skipped.
132\ncds# --> Return the value 123 and a byte array containing cds#
As defined by the ANSI standard C isspace(s) returns True for
Horizontal tab (HT), line feed (LF), vertical tabulation (VT),
form feed (FF), carriage return (CR) and white space.
Note: this function may fail if the bytes collected up to the space
character do not represent ascii numbers.
Args:
data: Input data.
Returns:
Parsed int + input data where we've removed the bytes corresponding to
the int value and the space character.
"""
# As defined by the ANSI standard C isspace(s)
# ASCII code for Horizontal tab (HT), line feed (LF),
# vertical tabulation (VT), form feed (FF), carriage return (CR)
# and white space
_BLANKS_ASCII = [9, 10, 11, 12, 13, 32]
ptr_end = 0
while data[ptr_end] not in _BLANKS_ASCII:
ptr_end += 1
value = int(data[:ptr_end].decode("utf-8"))
data = data[ptr_end:]
return value, data
def _16bits_byte_swap(data: Tensor) -> Tensor:
"""Invert the bytes composing a 2-byte value. The actual data type
of the tensor is not important but it must contains value in
[0, 2 ** 16 - 1]
For instance:
1111 1111 0000 0010 ==> 0000 0010 1111 1111
\______/ \______/ \______/ \______/
MSB LSB LSB MSB
Args:
data: Tensor to be swapped.
Returns:
Swapped tensor.
"""
msb = data // 2**8
lsb = data % 2**8
swapped_data = lsb * 2**8 + msb
return swapped_data
[docs]
def read_ppm(file_path: str) -> Tuple[Tensor, POSSIBLE_BITDEPTH]:
"""Read a `PPM file <https://netpbm.sourceforge.net/doc/ppm.html>`_,
and return a torch tensor [1, 3, H, W] containing the data.
The returned tensor is in [0., 1.] so its bitdepth is also returned.
.. attention::
We don't filter out comments inside PPM files...
Args:
file_path: Path of the ppm file to read.
Returns:
Image data [1, 3, H, W] in [0., 1.] and its bitdepth.
"""
assert os.path.isfile(file_path), f"No file found at {file_path}."
data = open(file_path, "rb").read()
magic_number = data[:2].decode("utf-8")
data = data[2:]
assert magic_number == "P6", (
"Invalid file format. PPM file should start with P6. " f"Found {magic_number}."
)
# Parse the header
width, data = _read_int_until_blank(_skip_one_byte(data))
height, data = _read_int_until_blank(_skip_one_byte(data))
max_val, data = _read_int_until_blank(_skip_one_byte(data))
data = _skip_one_byte(data)
n_bytes_per_val = 1 if max_val <= 255 else 2
bitdepth = int(math.log2(max_val + 1))
raw_value = torch.from_numpy(
np.frombuffer(
data,
count=3 * width * height,
dtype=np.uint8 if n_bytes_per_val == 1 else np.uint16,
)
)
# Re-arrange the value from R1 B1 G1 R2 B2 G2 to an usual [B, C, H, W] array
img = torch.empty(
(1, 3, height, width),
dtype=torch.float32,
)
for i in range(3):
img[:, i, :, :] = raw_value[i::3].view(1, height, width)
# In a PPM file 2-byte value (e.g. 257) is represented as
# 1111 1111 0000 0010
# \______/ \______/
# MSB LSB
# We want to invert these two bytes here to have an usual binary value
# 0000 0010 1111 1111
if n_bytes_per_val == 2:
img = _16bits_byte_swap(img)
# Normalize in [0. 1.]
img = img / (2**bitdepth - 1)
return img, bitdepth
[docs]
@torch.no_grad()
def write_ppm(
data: Tensor, bitdepth: POSSIBLE_BITDEPTH, file_path: str, norm: bool = True
) -> None:
"""Save an image x into a PPM file.
Args:
data: Image to be saved
bitdepth: Bitdepth, should be in
``[8, 9, 10, 11, 12, 13, 14, 15, 16]``.
file_path: Where to save the PPM files
bitdepth: Bitdepth of the file. Defaults to 8.
norm: True to multiply the data by 2 ** bitdepth - 1. Defaults to True.
"""
# Remove all first dimensions of size 1
c, h, w = data.size()[-3:]
data = data.view((c, h, w))
max_val = 2**data.bitdepth - 1
n_bytes_per_val = 1 if max_val <= 255 else 2
header = f"P6\n{w} {h}\n{max_val}\n"
if norm:
data = torch.round(data * (2**bitdepth - 1))
# In a PPM file 2-byte value (e.g. 257) is represented as
# 1111 1111 0000 0010
# \______/ \______/
# MSB LSB
# We want to invert these two bytes here to have an usual binary value
# 0000 0010 1111 1111
if n_bytes_per_val == 2:
data = _16bits_byte_swap(data)
# Format data as expected by the PPM file.
flat_data = torch.empty(
(c * h * w), dtype=torch.uint8 if max_val <= 255 else torch.uint16
)
for i in range(c):
flat_data[i::3] = data[i, :, :].flatten()
# Write once the header as a string then the data as binary bytes
with open(file_path, "w") as f_out:
f_out.write(header)
with open(file_path, "ab") as f_out:
f_out.write(np.memmap.tobytes(flat_data.numpy()))