# Software Name: Cool-Chic
# SPDX-FileCopyrightText: Copyright (c) 2023-2025 Orange
# SPDX-License-Identifier: BSD 3-Clause "New"
#
# This software is distributed under the BSD-3-Clause license.
#
# Authors: see CONTRIBUTORS.md
"""Utilities to define the coding structures."""
import math
from dataclasses import dataclass, field
from typing import List, Literal, Optional, Tuple, Union
from torch import Tensor
from enc.utils.misc import POSSIBLE_DEVICE
from enc.io.format.data_type import FRAME_DATA_TYPE, POSSIBLE_BITDEPTH
from enc.io.format.yuv import DictTensorYUV, convert_420_to_444, yuv_dict_to_device
# The different frame types:
# - I frames have no reference (intra)
# - P frames have 1 single (past) reference
# - B frames have 2 (past & future) references.
FRAME_TYPE = Literal["I", "P", "B"]
# A GOP is defined as something starting with an intra frames and followed
# by an arbitrary number of inter (P or B) frames. As such the number of frames
# in the GOP is the number of inter frames + 1, i.e.
#
# number_of_frames_in_gop = intra_period + 1 = number_of_inter_frames_in_gop + 1
#
#
# E.g.:
# I0 ---> P1 ---> P2 ---> P3 ---> P4 ---> P5 ---> P6 ---> P7 ---> P8
#
# Or a hierarchical random access GOP with nested B-frames (RA).
# E.g.:
# I0 -----------------------> P4 ------------------------> P8
# \----------> B2 <---------/ \----------> B6 <----------/
# \--> B1 <--/ \--> B3 <--/ \--> B5 <--/ \--> B7 <--/
#
# Here, both GOPs have an intra period of 8 (i.e. 8 inter-frames) in
# between two I-frames. First GOP P-period is 1, while second P period is 4
# which is the distance of the P-frame prediction.
#
[docs]
@dataclass
class FrameData:
"""FrameData is a dataclass storing the actual pixel values of a frame and
a few additional information about its size, bitdepth of color space.
Args:
bitdepth (POSSIBLE_BITDEPTH): Bitdepth, should be in
``[8, 9, 10, 11, 12, 13, 14, 15, 16]``.
frame_data_type (FRAME_DATA_TYPE): Data type, either ``"rgb"``,
``"yuv420"``, ``"yuv444"``.
data (Union[Tensor, DictTensorYUV]): The actual RGB or YUV data
"""
bitdepth: POSSIBLE_BITDEPTH
frame_data_type: FRAME_DATA_TYPE
data: Union[Tensor, DictTensorYUV]
# Filled up by the __post_init__() function
# ==================== Not set by the init function ===================== #
#: Height & width of the video :math:`(H, W)`
img_size: Tuple[int, int] = field(init=False)
#: Number of pixels :math:`H \times W`
n_pixels: int = field(init=False) # Height x Width
# ==================== Not set by the init function ===================== #
def __post_init__(self):
if self.frame_data_type == "rgb" or self.frame_data_type == "yuv444":
self.img_size = self.data.size()[-2:]
elif self.frame_data_type == "yuv420":
self.img_size = self.data.get("y").size()[-2:]
self.n_pixels = self.img_size[0] * self.img_size[1]
[docs]
def to_device(self, device: POSSIBLE_DEVICE) -> None:
"""Push the data attribute to the relevant device **in place**.
Args:
device: The device on which the model should run.
"""
if self.frame_data_type == "rgb" or self.frame_data_type == "yuv444":
self.data = self.data.to(device)
elif self.frame_data_type == "yuv420":
self.data = yuv_dict_to_device(self.data, device)
[docs]
def to_string(self) -> str:
"""Pretty string describing the frame data."""
s = "Frame data information:\n"
s += "-----------------------\n"
s += f"{'Resolution (H, W)':<26}: {self.img_size[0]}, {self.img_size[1]}\n"
s += f"{'Bitdepth':<26}: {self.bitdepth}\n"
s += f"{'Data type':<26}: {self.frame_data_type}"
return s
[docs]
@dataclass
class Frame:
"""Dataclass representing a frame to be encoded. It contains useful info
like the display & coding indices, the indices of its references as well
as the data of the decoded references and the original (*i.e.* uncompressed)
frame.
Args:
coding_order (int): Frame with ``coding_order=0`` is coded first.
display_order (int): Frame with ``display_order=0`` is displayed first.
depth (int): Depth of the frame in the GOP. 0 for Intra, 1 for P-frame,
2 or more for B-frames. Roughly corresponds to the notion of
temporal layers in conventional codecs.
Defaults to 0.
seq_name (str): Name of the video. Mainly used for logging purposes.
Defaults to ``""``.
data (Optional[FrameData]): Data of the uncompressed image to be coded.
Defaults to ``None``.
already_encoded (bool): ``True`` if the frame has already been coded
by the VideoEncoder. Defaults to False
index_references (List[int]): Index of the frame(s) used as references,
in **display_order**. Leave empty when no reference are available
*i.e.* for I-frame. Defaults to ``[]``.
ref_data (List[FrameData]): The actual data describing the decoded
references. Leave empty when no reference are available
*i.e.* for I-frame. Defaults to ``[]``.
"""
coding_order: int
display_order: int
depth: int = 0
seq_name: str = ""
data: Optional[FrameData] = None
decoded_data: Optional[FrameData] = None
already_encoded: bool = False
index_references: List[int] = field(default_factory=lambda: [])
# Filled up by the set_refs_data() function.
refs_data: List[FrameData] = field(default_factory=lambda: [])
# ==================== Not set by the init function ===================== #
#: Automatically set from the number of entry in ``self.index_references``.
frame_type: FRAME_TYPE = field(init=False)
# ==================== Not set by the init function ===================== #
def __post_init__(self):
assert len(self.index_references) <= 2, (
"A frame can not have more than 2 references.\n"
f"Found {len(self.index_references)} references for frame {self.display_order} "
f"(display order).\n Exiting!"
)
if len(self.index_references) == 2:
self.frame_type = "B"
elif len(self.index_references) == 1:
self.frame_type = "P"
else:
self.frame_type = "I"
[docs]
def set_frame_data(
self,
data: Union[Tensor, DictTensorYUV],
frame_data_type: FRAME_DATA_TYPE,
bitdepth: POSSIBLE_BITDEPTH,
) -> None:
"""Set the data representing the frame i.e. create the ``FrameData``
object describing the actual frame.
Args:
data: RGB or YUV value of the frame.
frame_data_type: Data type.
bitdepth: Bitdepth.
"""
self.data = FrameData(
bitdepth=bitdepth, frame_data_type=frame_data_type, data=data
)
[docs]
def set_decoded_data(self, decoded_data: FrameData) -> None:
"""Set the data representing the decoded frame.
Args:
refs_data: Data of the reference(s)
"""
# ! There might be a memory management issue here (deep copy vs. shallow copy)
self.decoded_data = decoded_data
[docs]
def set_refs_data(self, refs_data: List[FrameData]) -> None:
"""Set the data representing the reference(s).
Args:
refs_data: Data of the reference(s)
"""
assert len(refs_data) == len(self.index_references), (
f"Trying to load data for "
f"{len(refs_data)} references but current frame only has {len(self.index_references)} "
f"references. Frame type is {self.frame_type}."
)
# ! There might be a memory management issue here (deep copy vs. shallow copy)
self.refs_data = refs_data
[docs]
def upsample_reference_to_444(self) -> None:
"""Upsample the references from 420 to 444 **in place**. Do nothing
if this is already the case.
"""
upsampled_refs = []
for ref in self.refs_data:
if ref.frame_data_type == "yuv420":
ref.data = convert_420_to_444(ref.data)
ref.frame_data_type = "yuv444"
upsampled_refs.append(ref)
self.refs_data = upsampled_refs
[docs]
def to_device(self, device: POSSIBLE_DEVICE) -> None:
"""Push the data attribute to the relevant device **in place**.
Args:
device: The device on which the model should run.
"""
if self.data is not None:
self.data.to_device(device)
for index_ref in range(len(self.refs_data)):
if self.refs_data[index_ref] is not None:
self.refs_data[index_ref].to_device(device)
[docs]
@dataclass
class CodingStructure:
"""Dataclass representing the organization of the video *i.e.* which
frames are coded using which references.
A few examples:
.. code-block::
# A low-delay P configuration
# I0 ---> P1 ---> P2 ---> P3 ---> P4 ---> P5 ---> P6 ---> P7 ---> P8
intra_period=8 p_period=1
# A hierarchical Random Access configuration
# I0 -----------------------------------------------------> P8
# \-------------------------> B4 <-------------------------/
# \----------> B2 <---------/ \----------> B6 <----------/
# \--> B1 <--/ \--> B3 <--/ \--> B5 <--/ \--> B7 <--/
intra_period=8 p_period=8
# There is no more prediction from I0 to P8. Instead the GOP in split in
# half so that there is no inter frame with reference further than --p_period
# I0 -----------------------> P4 ------------------------> P8
# \----------> B2 <---------/ \----------> B6 <----------/
# \--> B1 <--/ \--> B3 <--/ \--> B5 <--/ \--> B7 <--/
intra_period=8 p_period=4
A coding is composed of a few hyper-parameters and most importantly a
list of ``Frame`` describing the different frames to code.
Args:
intra_period (int): Number of inter frames in the GOP. As such,
the first (intra) frame of two successive GOPs would be spaced by
`intra_period` inter frames. Set this to 0 for all intra coding.
p_period (int): Distance to the furthest P prediction in the GOP. Set
this to 1 for low-delay P or to ``intra_period`` for the usual
random access configuration.
seq_name (str): Name of the video. Mainly used for logging purposes.
Defaults to ``""``.
"""
intra_period: int
p_period: int = 0
seq_name: str = ""
# ==================== Not set by the init function ===================== #
#: All the frames to code, deduced from the GOP type, intra period and P period.
#: Frames are index in display order (i.e. temporal order). frames[0] is the 1st
#: frame, while frames[-1] is the last one.
frames: List[Frame] = field(init=False)
# ==================== Not set by the init function ===================== #
def __post_init__(self):
self.frames = self.compute_gop(self.intra_period, self.p_period)
[docs]
def compute_gop(self, intra_period: int, p_period: int) -> List[Frame]:
"""Return a list of frames with one intra followed by ``intra_period``
inter frames. The relation between the inter frames is implied by
p_period. See examples in the class description.
Args:
intra_period: Number of inter frames in the GOP.
p_period: Distance between I0 and the first P frame or between
subsequent P-frames.
Returns:
List describing the frames to code.
"""
# I-frame
frames = [
Frame(
coding_order=0,
display_order=0,
index_references=[],
seq_name=self.seq_name,
)
]
if intra_period == 0 and p_period == 0:
print("Intra period is 0 and P period is 0: all intra coding!")
return frames
assert intra_period % p_period == 0, (
f"Intra period must be divisible by P period."
f" Found intra_period = {intra_period} ; p_period = {p_period}."
)
# In the example of RA GOP given above, the number of chained GOP is 2.
n_chained_gop = intra_period // p_period
for index_chained_gop in range(n_chained_gop):
for index_frame_in_gop in range(1, p_period + 1):
display_order = index_frame_in_gop + index_chained_gop * p_period
depth_frame_in_gop = self.get_frame_depth_in_gop(index_frame_in_gop)
# References display order are located at +/- delta_time_ref
# from the current frame display order
delta_time_ref = p_period // 2 ** (depth_frame_in_gop - 1)
# First frame is an intra
# Last frame of each chained GOP is a P-frame
if index_frame_in_gop == p_period:
refs = [display_order - delta_time_ref]
# Otherwise we have a B-frame
else:
refs = [
display_order - delta_time_ref,
display_order + delta_time_ref,
]
if depth_frame_in_gop != 0:
# Coding order of the first frame with this depth in
# the current chained gop.
# Until depth = 3 (included), the depth **is** the coding order since
# all temporal layer whose depth is 0, 1, 2, 3 have a single frame.
# For depth >= 4, we must take into account that each previous layer
# of depth d_i < 4 has had 2 ** d_i - 1 frames in it.
coding_order_in_gop = depth_frame_in_gop + sum(
[2 ** (x - 2) - 1 for x in range(3, depth_frame_in_gop)]
)
# When depth >= 4 we have multiple frames per layer, this takes it into account
# to obtain the proper coding order
coding_order_in_gop += (index_frame_in_gop - delta_time_ref) // (
2 * delta_time_ref
)
else:
coding_order_in_gop = 0
coding_order = index_chained_gop * p_period + coding_order_in_gop
frames.append(
Frame(
coding_order=coding_order,
display_order=display_order,
index_references=refs,
depth=depth_frame_in_gop,
seq_name=self.seq_name,
)
)
return frames
[docs]
def pretty_string(self) -> str:
"""Return a pretty string formatting the data within the class"""
COL_WIDTH = 14
s = "Coding configuration:\n"
s += "---------------------\n"
s += f'{"Frame type":<{COL_WIDTH}}\t{"Coding order":<{COL_WIDTH}}\t{"Display order":<{COL_WIDTH}}\t'
s += f'{"Ref 1":<{COL_WIDTH}}\t{"Ref 2":<{COL_WIDTH}}\t{"Depth":<{COL_WIDTH}}\t{"Encoded"}\n'
for idx_coding_order in range(len(self.frames)):
cur_frame = self.get_frame_from_coding_order(idx_coding_order)
s += f"{cur_frame.frame_type:<{COL_WIDTH}}\t"
s += f"{cur_frame.coding_order:<{COL_WIDTH}}\t"
s += f"{cur_frame.display_order:<{COL_WIDTH}}\t"
if len(cur_frame.index_references) > 0:
s += f"{cur_frame.index_references[0]:<{COL_WIDTH}}\t"
else:
s += f'{"/":<{COL_WIDTH}}\t'
if len(cur_frame.index_references) > 1:
s += f"{cur_frame.index_references[1]:<{COL_WIDTH}}\t"
else:
s += f'{"/":<{COL_WIDTH}}\t'
s += f"{cur_frame.depth:<{COL_WIDTH}}\t"
s += f"{cur_frame.already_encoded:<{COL_WIDTH}}\t"
s += "\n"
return s
[docs]
def get_number_of_frames(self) -> int:
"""Return the number of frames in the coding structure.
Returns:
Number of frames in the coding structure.
"""
return len(self.frames)
[docs]
def get_max_depth(self) -> int:
"""Return the maximum depth of a coding configuration
Returns:
Maximum depth of the coding configuration
"""
return max([frame.depth for frame in self.frames])
[docs]
def get_all_frames_of_depth(self, depth: int) -> List[Frame]:
"""Return a list with all the frames for a given depth
Args:
depth: Depth for which we want the frames.
Returns:
List of frames with the given depth
"""
return [frame for frame in self.frames if frame.depth == depth]
[docs]
def get_max_coding_order(self) -> int:
"""Return the maximum coding order of a coding configuration
Returns:
Maximum coding order of the coding configuration
"""
return max([frame.coding_order for frame in self.frames])
[docs]
def get_frame_from_coding_order(self, coding_order: int) -> Optional[Frame]:
"""Return the frame whose coding order is equal to ``coding_order``.
Return ``None`` if no frame has been found.
Args:
coding_order: Coding order for which we want the frame.
Returns:
Frame whose coding order is equal to ``coding_order``.
"""
for frame in self.frames:
if frame.coding_order == coding_order:
return frame
return None
[docs]
def get_max_display_order(self) -> int:
"""Return the maximum display order of a coding configuration
Returns:
Maximum display order of the coding configuration
"""
return max([frame.display_order for frame in self.frames])
[docs]
def get_frame_from_display_order(self, display_order: int) -> Optional[Frame]:
"""Return the frame whose display order is equal to ``display_order``.
Return None if no frame has been found.
Args:
display_order: Coding order for which we want the frame.
Returns:
Frame whose coding order is equal to ``display_order``.
"""
for frame in self.frames:
if frame.display_order == display_order:
return frame
return None
[docs]
def set_encoded_flag(self, coding_order: int, flag_value: bool) -> None:
"""Set the flag ``self.already_encode`` of the frame whose coding
order is ``coding_order`` to the value ``flag_value``.
Args:
coding_order: Coding order of the frame for which we'll change the flag
flag_value: Value to be set
"""
for frame in self.frames:
if frame.coding_order == coding_order:
frame.already_encoded = flag_value
[docs]
def unload_all_decoded_data(self) -> None:
"""Remove the data describing the decoded data from the memory. This
is used before saving the coding structure. The decoded data can be retrieved
by re-inferring the trained model."""
for idx_display_order in range(self.get_number_of_frames()):
# if hasattr(self.frames[idx_display_order], "decoded_data"):
# del self.frames[idx_display_order].decoded_data
# TODO: Set to None and rely on the garbage collector to
# TODO: delete this?
self.frames[idx_display_order].decoded_data = None
[docs]
def unload_all_original_frames(self) -> None:
"""Remove the data describing the original frame from the memory. This
is used before saving the coding structure. The original frames can be
retrieved by reloading the sequence"""
for idx_display_order in range(self.get_number_of_frames()):
# if hasattr(self.frames[idx_display_order], "data"):
# del self.frames[idx_display_order].data
# TODO: Set to None and rely on the garbage collector to
# TODO: delete this?
self.frames[idx_display_order].data = None
[docs]
def unload_all_references_data(self) -> None:
"""Remove the data describing all the references from the memory. This
is used before saving the coding structure. The reference data can be
retrieved by re-inferring the trained model."""
for idx_display_order in range(self.get_number_of_frames()):
# if hasattr(self.frames[idx_display_order], "refs_data"):
# del self.frames[idx_display_order].refs_data
# TODO: Set to None and rely on the garbage collector to
# TODO: delete this?
self.frames[idx_display_order].refs_data = None
[docs]
def get_frame_depth_in_gop(self, idx_frame: int) -> int:
"""Return the depth of a frame with index <idx_frame> within a hierarchical GOP.
Some notes:
- ``idx_frame == 0`` **always** corresponds to an intra frame i.e. depth = 0
- ``idx_frame == p_period`` is the P-frame i.e. depth = 1
- This should be used separately for the successive chained GOPs.
Args:
idx_frame: Display order of the frame in the GOP.
p_period: P-period. Should be a power of two.
Returns:
Depth of the frame in the GOP.
"""
assert idx_frame <= self.p_period, (
f"idx_frame should be <= to p_period."
f" P-period is {self.p_period}, Index frame is {idx_frame}."
)
assert math.log2(self.p_period) % 1 == 0, (
f"p_period should be a power of 2." f" P-period is {self.p_period}."
)
if idx_frame == 0:
return 0
# Compute the depth
depth = int(math.log2(self.p_period) + 1)
for i in range(int(math.log2(self.p_period)), 0, -1):
if idx_frame % 2**i == 0:
depth -= 1
return int(depth)